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Abstract 

By using the boundary-value Green-function technique, 
effects of absorption, resonant scattering and polarization 
are incorporated in the solution of the Takagi-Taupin 
equations for three-beam diffraction in finite perfect 
crystals. It is shown how such features may influence the 
dynamical interactions. The potential of three-beam 
interference acting as a phase-sensitive probe for 
resonant scattering is demonstrated. Depending on the 
applied model used for the calculations of the corrections 
to the atomic scattering factor, profile asymmetry reversal 
is theoretically predicted to occur near the photoelectric 
threshold in a finite germanium crystal. Significant 
distortions of the three-beam profiles are found for 
polarized incident radiation, especially for reflection 
triplets having an invariant phase sum near 90 ~. 

1. Introduction 

In the previous paper (Thorkildsen & Larsen, 1998), 
hereafter denoted TL-I, we presented a method for 
calculating azimuthal ~p curves for some finite crystal 
geometries based on the Takagi-Taupin equations. There 
we did not take into consideration resonant scattering, 
photoelectric absorption and polarization of the X-ray 
beams. 

In elementary analysis, X-rays are considered to be 
scattered from free electrons. This is treated by applying 
the first Born approximation to the scattering system, 
yielding the atomic scattering factor, f .  However, if the 
incident radiation is close to the frequency corresponding 
to an electronic transition of the scattering system, 
resonance phenomena become important. This gives a 
wavelength-dependent contribution to the scattering 
which also involves a phase shift. Such effects are 
normally dealt with using the second Born approxima- 
tion, yielding the well known real ( f ' )  and imaginary 
(f") corrections to the atomic scattering factor. 

Photoelectric absorption is related to the imaginary 
part of the average electric susceptibility, Xo. Its influence 
will depend upon the crystal shape and the diffraction 
geometry. Anomalous transmission, on the other hand, is 
related to the contribution from resonant scattering to the 
imaginary part of the coefficients, Xh, building the 
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Fourier series of the spatially varying electric suscept- 
ibility. It will affect the phase of the structure factors and 
thus the invariant triplet phase sum accessed in a three- 
beam diffraction experiment, making this a sensitive 
'probe' for such features. 

Resonant scattering effects will critically depend on 
the wavelength of the incident radiation. 

Polarization, i.e. the vector nature of the waves 
constituting the displacement field, introduces an addi- 
tional coupling between the amplitudes involved in three- 
beam diffraction. This may, however, be included in the 
formalism in a straightforward way. It has long been 
known that polarization complicates the phase-determi- 
nation procedures in multiple diffraction experiments 
(Lipscomb, 1949). Several authors have investigated the 
effect using a kinematical approach (Moon & Shull, 
1964; Caticha-Ellis, 1969; Prager, 1971; Cannata et al., 
1989) or plane-wave dynamical approaches (Juretschke, 
1982a,b, 1984, 1986a,b; Chang & Tang, 1988; Luh & 
Chang, 1991; Weckert & Hfimmer, 1997). The influence 
of polarization on multiple diffraction has also been 
verified and examined experimentally using conventional 
X-rays (Luh & Chang, 1991) and synchrotron radiation 
(Alexandropoulos et al., 1990; Schwegle et al., 1990). 
Another approach was adopted by Shen and co-workers 
(Shen & Finkelstein, 1990; Shen, 1993) who exploited 
three-beam diffraction to investigate the state of polar- 
ization of the incident beam. 

2. Absorption 

For the three-beam case, the Takagi-Taupin equations are 
written in the following form: 

ODo/OS o = iXoh£) h + iXogDg 

ODh/Os h = iXhoDo + ighgOg (1) 

ODg/OSg : ixgoD o + ixghD h, 

where we at this stage neglect the polarization couplings. 
The amplitudes are transformed according to 
p 6 (o, h, g): 

Dp(so, Sh, Sg ) = Dp(So, S~,sx)exp[27ri(/3hs h + [:3gsg)]. (2) 

The definitions and nomenclature are all found in TL-I. 
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The solution of (1), with a point-source boundary 
condition on the entrance surface, 

b ~ ( s )  = ~[s~ - s ~ ( S ) ] , ~ [ s ~  - s~(S)], (3) 

yields the Green functions_we are searching for. We 
denote these by (do, d~,dg ). The actual boundary 
condition, continuity of D across the entrance surface, 
leads to the equation 

D~)(S) = D(o ) exp[--2zri~ths~(S)] exp[-2zriOtgsg(S)] 

× exp{zriKXo[so(S) + sh(S) + sg(S)]}, (4) 

where D~o ~) is the amplitude associated with the incoming 
plane wave. 

Photoelectric absorption and anomalous transmission 
are treated within the present formalism by introducingf '  
and f "  in the calculations for Xo and Xp_q. Anomalous 
transmission effects are included in the boundary-value 
Green functions, {dp}, through the phases {q3pq}. 

The solution for the fields at a point, P, within the 
crystal is found by integration: 

D q ( P )  = JD(o ~) f d S  (tq( A o ,  A h ,  A g )  

x exp[2zri(deoA o + dthA h + Olgmg)] 

x exp[--(Ix/2)(A o + A h + Ag)], (5) 

where J is a geometrical factor (¢f TL-I) and 
A q  ~ s q ( P ) -  s q ( S ) .  We have also defined an effective 
excitation error that takes refraction into account: 

Olq - -  Olq - -  K(.~Xo/2). (6) 

Ix is the linear photoelectric absorption coefficient, given 
by 

where 

Ix = -2rrK3 Xo, (7) 

Xo = - - (Fe)~2/~TVc)Fo • (8) 

Owing to the resonant scattering contribution, 

[Xpq[ ¢ [~Cqp[ (9) 

qgpq ¢ --q) qp. ( 1 O) 

The procedure of calculation is analogous to the one 
presented in TL-I and is carried out for the crystal 
geometries depicted in Figs. 1 and 2 of that paper. 

The actual series expansions and surface integrations 
were performed using MATHEMATICA/f  To ease the 
calculations, an elaborate coding scheme was adopted. 

For the Laue-Laue case (Fig. 1 of TL-I), the result for 
the diffracted power to the third order is 

~f MATHEMATICA is a trademark for Wolfram Research Inc., 
Champaign, IL 61820, USA. 

Ph = P°(g~(~io)g2(~, ~){1 - 2(1%11%ol/Iohol) 
X k 4 ( ~ ; '  i ~ )  c o s ( ~  - ~ox) 

+ g3(~g, ~g) sin(~°z - ~P~)]} 
i )  r i r + ([rlhglzlOgol2/lrlhol2)gl(~o g5(~,  ~'g)g2(~h, ~,) 

[g6(~o)g2(~h, fig) COS q)v + 2[rlgollOog i r i r ~h)[--g3 (~g, 

+ g4(~g, ~g)sin %] + 210ghllrlhglg~(~'o) 
X { k 4 ( ~ g '  i r ~r i r ~'~)g8(~, ~ )  g3( ~ cos - , ¢'~)g7(~, ~)1 ~: 
+ k 4 ( ~ ; '  i r ~g)g~(~, ~) 

( r i r + g3 ~,, ~'~)gs(~~, ~)]  sin ~o,}), (11) 

whereas, for the Bragg-Laue case (Fig. 2 of TL-I), 

eh = P°(g9(~,  ~){1 - 2(]ohgllrlgo]/]Oho]) 

X k 4 ( ~ g '  ~'g) COS((~OZ - -  ~)x) 

g3(~g, asig) sinOpr - ~Ox)]} 

(Irh,gl21rlgol 2 /Ir~aol2)gs(~g, ~g)gg(~,, ~ )  

2[rlgollrlogl{[g4(~g, ~)gl0(~,, ~ )  

+ 

+ 

+ 

-- g3(~g 

+ g4(~g 

+ 2[rlgh 

-- g3(~eg, ~g)gll ('~,, ~e~)] cos ~o z 

+ [g3(~g, ~Pg,o(~;, ~J,) 
+ g4(~g, ~'~,)g11(~rh, ~J,)] sin ~Oz} ). 

,~g)g , l (~ , , ' , , ) ]cos~ov  +[g~(~g,  ' " . ,'~)glo(~h, ~ )  

, ~ )g l  1 (~,, ~)]  sin %} 

II0hel{k4(~;, ~g)gl0(~, ~h) 

(12) 

In equations (11) and (12), the contribution to p r ima~ 
extinction is omitted - i.e. terms proportional to 10hol • 
~r__ 2:rrotqlq, 2 ~ q -  Ixlq, whereas the triplet invariant 
pnase sum is given by ~0 z = q)oh + q)hg + q)go. We have 
defined ~o x = ~Ooh + q)ho, qgy = q)og AV q)go, q)z -"- qggh At- qghg 
and finally Irlpq[ = IXpqllp. Note that the experimental 
phase sum appears in the combination 
q)IE --  qgx = qghg "~ qg go --  q)ho" POL,B represent the kinemati- 
cal two-beam power in each case. The functions {g,.} are 

0. 

1'~ -o 

Fig. 1. Effect of increasing absorption, lsotropic crystal shape; 
l o = l h = lg = I. Laue-Laue scattering geometry, lnvariant triplet 
phase sum: ~0 z = 0 °. 
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given in Appendix A. Calculations have been performed 
up to the fourth order and these results are used for 
generating Figs. 1, 2 and 3. 

The effect of absorption on a three-beam ~p profile is 
shown in Fig. 1 for an isotropic crystal (l o --  l h = lg = l). 
We see how the dynamical perturbations are damped out 
as # l  increases, i.e. as absorption becomes more 
pronounced. 

3. Resonant scattering 

The 'phase sensitivity' of three-beam diffraction is 
exploited in order to investigate resonant scattering near 
the photoelectric threshold in germanium. We have 
compared different anomalous-scattering-factor models 
used for calculations of f'()~) and f" (1) ;  the one by 
Cromer & Liberman, which utilizes the dipole approx- 
imation (Cromer & Liberman, 1970, 1981; Cromer, 
1995), and that introduced more recently by Kissel and 
co-workers (Kissel et al., 1980, 1995; Kissel, 1995). The 
latter model is based on second-order scattering-matrix 
theory in which many-body effects have been taken into 
account. 

Using equations (11) and (12), we have calculated ~p 
curves at four different wavelengths for the 

_ _  

(115)(220)(115) reflection triplet in germanium. Here, 

Table 1. Calcu la t ed  p h a s e  s u m s  f o r  var ious  wave l eng th s  
us ing  C r o m e r  & L iberman ' s  m o d e l  f o r  re sonan t  scat ter-  

ing  p a r a m e t e r s  

Reflection triplet: (115)(220)(115). 

(A) 1.0000 1.1165 1.1166 1.1211 1.2000 

~Pz (o) 30 66 13 6.2 6.0 
(p~ = (p~ (o) 22 51 10 4.6 4.3 
¢Pz - (P~ (o) 8.0 15 3.0 1.6 1.7 
~Pv (o) 16 30 5.0 3.1 3.0 

h = (115) denotes the_primary reflection, whereas 
g = (220) and h - g  = (115) are the secondary and 
coupling reflections, respectively. In order to get valid 
input parameters for the series-expansion solution, the 
calculations are carried out for a very small model 
crystal: 1 o = I h - -  l g -  1 l.tm. Both Laue-Laue and 
Bragg-Laue scattering were considered. Calculated 
phase sums for the various wavelengths and different 
anomalous-scattering-factor models are given in Tables 1 
and 2. 

It should be noted that the models predict the threshold 
at slightly different energies. The photoelectric threshold 
for Ge should, according to the Cromer-Liberman 
model, be at ~ = ~'K = 1.11659 A, whereas the Kissel 
model gives ,k K = 1.12105 A. 
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Fig. 2. Simulated ¢ profiles for the germanium (115)(220)(115) triplet at various wavelengths. 1o = lh = lg = 1 lam. Resonant scattering parameters 

after Cromer & Liberman. Solid line: Laue-Laue case; dashed line: Bragg-Laue case. (a)) ,  = 1.0000 A; (b))~ -- 1.1165 A; (c) ~. = 1.1166 A; 
(d) ~. = 1.2000 A. 
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Table 2. Calculated phase s u m s  f o r  v a r i o u s  wavelengths 
using Kissel et al.'s model  for  resonant scattering 

parameters  

Reflection triplet: (115)(220)(115). 

i (/%,) 1.0000 1.1165 1.1210 1.1211 1.2000 

~o z (°) 33 49 150 27 6.6 
~0~ = ~0, (o) 25 38 - 8 .3  23 5.0 
~o z - (p~ (°) 8.0 11 160 4.0 1.6 
q~. (°) 17 23 - 4 1  6.5 3.2 

curves obtained using the different models for calculating 
f '  and f" are in practice identical. 

4. Polarization 

By assigning polarization vectors (6"f and {tp; 
p e {o, g, h}) to the Laue-Laue case, as snown in Fig. 
1 of TL-I, such that ~,, ~" and ~ form a Cartesian base, p (, p 
we may write the Takagl-Taupin equations for a three- 
beam case in the following way: 

In Figs. 2 and 3, the resulting ~p profiles for four 
different wavelengths are shown for both the Laue-Laue 
and Bragg-Laue cases. We note the shift in the overall 
level of dynamical perturbation of the two-beam power 
for the primary reflection (115) in the two cases. This is 
mainly due to different absorption effects. Furthermore, 
the perturbation decreases as the threshold is approached 
from the high-energy side. Using the Kissel model, we 
get a complete reversal of the asymmetry near the edge 
(Fig. 3c). This is not found using the Cromer-Liberman 
model. Such a reversal has been experimentally observed 
(Larsen, 1997) and will be the subject of a following 
paper (Thorkildsen e t  a L ,  1998). On the low-energy side 
of the edge, we have qualitative similarity (Figs. 2c and 
3c) and, for wavelengths far from the threshold, the ~p 

• --0" aDo/OSo • o o ~  . ~ - o ---- IKoh L) h ~ lKog D°g 
O[~o / Os o = itc~ D'~ + iK 7 ~g + ix 7 D~ 

IKho 13 o -~- IKhg Llg 

oDor~as h = iJcZ:[~o + iKZg~gg + iXZgD~g 

= iKg,7 o + 

(13) 

The transformation Dp = Dp exp(27ri Zq ~qSq), 
r E {o', zr}, c f  equation (2), is applied individually to 
each of the six amplitudes of equation (13). In this part, 
we do not take absorption into consideration. The unit 
polarization vectors are chosen such that the {t compo- 
nents are in the plane spanned by (So, §h). Within this 
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Fig. 3. Simulated %0 profiles for the germanium (115)(220)(ii5) triplet at various wavelengths, l o = I h = Ig = 1 jam. Resonant scattering parameters 

after Kissel et al.. Solid line: Laue-Laue case; dashed line: Bragg-Laue case. (a) ;~ = 1.0000 A; (b) k = 1.1210 A; (c) k = 1.1211 A; (d) 
= 1.2000 A. 
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reference frame a o . n  h = ah .no = °'o " = b h • = 0 
and bo • o'~ = 1. The remaining couplings are included in 
the calculations through the parameters Kpq [equation (6) 
of TL-I]. We also define, restricting the discussion to 
symmetrical scattering: 

I ~ o  " ~ h l  = Cl  

I%. ,%1 = I~-,%1 = c2 

I~o. ~gl = I ~ .  %1 = c~ 

IO'g" h:ol = IO'g" h:h[ = C 4 -  

(14) 

Expressions for the trigonometric factors {ci} are given in 
Appendix A. 

The solution of (13) is found by introducing a linear 
rv 

operator, £pq, similar to equation (11) of TL-I, in which 
the polarization couplings are included: 

sp 
rl; ~ v • ~1; ,t ~ 19 ! 

ff-.pqDq(So, Sh, Sg ) = lKpq f ~ p D q ( s p ,  {Sq})  ( 1 5 )  

4 

and applying the boundary conditions [equation (13) of 
TL-1 ] to each state of polarization. The calculations for 
the Laue-Laue (and Bragg-Laue) case still follows the 
procedure presented in TL-I. The algebraic expressions 
for the coefficients in the series expansion of the 
diffracted power, Ph, grow very rapidly and in this case 
calculations up to the third order are performed - i.e. the 
first correction'[" to the term carrying the phase informa- 
tion is found. 

The result is presented below for the Laue-Laue case: 

D 2 (t(t 2 Ph = (c/2eo)(vL/lo)(2(D~lrfo~[ 2 + 0ol0ohl )f~(G) 

-4(O~lr%'ffllrlogTIIrlo%TI + O~TlOgTIlOog(tllrlo%TI 

+ OoTOoolOgTIIrlogllOo~TI 
(t(t TO fro" 

+ DoTDo(t loeb II % II 0oh I 
o'(t o(t + D~lrlgTIIrlogllrloh I){f2(#g) cos ~0z 

+fl(~g) sin qgz}fx(G ) - (D~TIr/S[ 4 

+O2(tl ( to4  ~ 2 O Trr2 Oohl ) f l ( h ) - -  { oT(OoTIrlogl 
Ta TO (to TT 2 + DoT[Oog [2 ..{_ Do(t[Oog[[rlog I)117o h [ 

7r(t o-(t (to (t(t 
- Do(t(OoT[rlog] + Ooolrlog I)lr/oh 1210og l} 

To O (t(t 2 (to 2 × f l (~g)f l (~h)  + 4{(DoTlOogl + O(tlr/ogl) Ir/gh 
TTr OT TO" 

+ (DoT I r/g~T I [ Oog I + Ooo I rlgh II Oog I 

+ O0o I r/g°~ I I r/o°~ I)2 }f3 (~g)f~ (G) 

- 4{Oo(tlrlg°Zllrlo°Zl(OoTlOgTIIrlo~l 

+ Do(t I r]gh(t(t I I rloh"~ l) + DOT I rlohTT I (D0,~ OghTT 2 IrlohlTT 
+ D 0 ,  I (tT 2 TT (trr a a  (t(t rlgh It lob [ + Doo [riga II rlgh II Ooh I)} 

× ¢f,(%)A(~) +f2(%)A(~)}). 

i" Terms corresponding to Umweganregung and AuJhellung. 

Do(t, T represent the strength of the incoming wave 
associated with each state of polarization and 
I~pql = IXpql(lplq) l/z. The functions {f} are the same as 
given in equation (32) in TL-I; they are also tabulated in 
Appendix A for the sake of completeness, v L is the 
volume of the crystal (Fig. 1 of TL-I), e 0 is the 
permittivity of vacuum and c the speed of light. 

It is clear that a pure a- (or n'-) polarized incoming 
wave may generate both a- and 7r-polarized wave fields 
within the crystal. This is consistent with the findings of 
Chang & Tang (1988) who used standard plane-wave 
theory. 

By explicitly writing the geometrical coupling factors 
inherent in the lTp q parameters, we may express the 
relative change in the integrated power in the same 
fashion as equation TL-I (34): 

A ~h (~g)/7Y~ = -2(1 r/hg [ IOgol/IOhol)P, [f2(%) cos ~oz 

+fl(~:g) sin ~0z] -- ([~Thg[2p2 q-[Ogol2p3) 

x fl(~g) + 2([Ohgl2lrlgol2/lrlhol2)p4f3(~g), 

(16) 

where the 'polarization factors', {Pi}, are given by 

2 2  2 2 d )  Pl = boc3 + bobTc3c4(1 + cl)  + bTCl (c2 + 
2 2  2 2  2 c~4) P2 = boc3 + 2b(tbTclc3c4 + bTcl(c2 + 

2 2 C 2) .q_ bTCI(C  2 q_ P3 = b~c3 + bobTC3C4(1 q- 2 2 2 C 2) 

2 4 2 2 2c3c34) 2b(tbT(C~C 4 ,2 2 P4 -- bo(c3 -F c 4 + c3c 4 + + _qt_ c2c4 
2 2 2  c 4) q- C2C3C4) -}- bT(C3C 4 + 

with {ci} defined in (14) and 

b 2 = IDo(tl 2/(IDo(tl 2 + IDoTI z) 

b(tbT = IDo(tIlDoTI/(IDo(tl 2 + IDoTI 2) 

b 2 = IDo~lZ/(IDo(tl 2 + IDoTI2). 

We see that the only difference between TL-I (34) and 
(16) is the presence of the polarization factors in the 
latter. They serve as geometrical 'weighting factors', 
caused by the coupling between the wave fields excited 
and the state of polarization of the incident beam. 
Depending on their relative contribution, the correct 
profile asymmetry may be extinguished, making inter- 
pretation difficult (Juretschke, 1982b, 1984, 1986a). It 
has been pointed out (Weckert & Hfimmer, 1997) that a 
complete tlaree-beam profile asymmetry reversal can 
occur if some of the scalar products between the 
polarization vectors change signs due to geometrical 
reasons. For the present finite model crystal, the 
scattering geometry is to a certain extent fixed, thereby 
restricting the polarization vectors within the chosen 
frame. The calculations nevertheless show that the effects 
of polarization on three-beam azimuthal V-scan profiles 
may be significant and the predictions from the present 
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theory seem to be in keeping with experimental results 
found in the literature (Luh & Chang, 1991; Schwegle et 
al., 1990). In Figs. 4 and 5, the relative change in the 
integrated power, as a function of  both ~o~: and ~g(~p), for 
different types of incident-beam polarization, is shown. 
In Fig. 4, we have a case of a strong primary and 
secondary reflection and a weak coupling. Fig. 5 
simulates a case of a weak primary reflection and strong 
secondary and coupling reflections. 

It is seen that the unpolarized beam yields the highest 
peak power in the maps and that a polarized incoming 
beam may cause anomalities, leading to problems of 
interpreting the 72 curves. This is evident especially in 
cases where ~0r. is near 90 °, using for instance the scheme 
of Hfimmer & Weckert (1994). Such features occur both 
for a a-polarized incoming beam (cf Fig. 4) and for a rr- 
polarized beam (cf Fig. 5). Similar results are also 
(qualitatively) obtained for the Bragg-Laue case. 
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Fig. 4. Relative integrated power as a function of  the invariant triplet 
phase sum and the normalized excitation error. Influence of  incident- 
beam polarization. Laue-Laue case. (a) a-polarized case, (b) zr- 
polarized case, (c) unpolarized case. Model parameters used: 
Irlo~'l = 0.32, 10o~l = 0.035, J0"o~,~l = 0.060, 1Oo~gl = 0.31, 
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5. Conclusions 

This paper shows how absorption/resonant scattering and 
polarization couplings may be treated for three-beam 
diffraction in finite crystals using the Takagi-Taupin 
equations. 

In the case of  resonant scattering, the value of  the 
invariant triplet phase sum, ~0z, and hence the shape of  
the lp profile, strongly depends upon the values o f f '  and 

f " .  The Kissel model, which we have used for some of  
our calculations, shows severe resonant effects near the 
photo-electric threshold leading to a shift in the phase 
sum of  --~ 18ff ~. The large values of  f '  based on this 
model (cf Table 2) may be unrealistically high but the 
calculations nevertheless show that three-beam diffrac- 
tion can be used as a sensitive experimental tool to 
distinguish between different anomalous-scattering-fac- 
tor models. 
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Fig. 5. Relative integrated power as a function of the invariant triplet 
phase sum and the normalized excitation error. Influence of incident- 
beam polarization. Laue-Laue case. (a) a-polarized case, (b) rr- 
polarized case, (c) unpolarized case. Model parameters used: 

r t r t  r t r t  Irl~l = 0.050, Ir/o~l = 0.030, 10ogl = 0.32, Ir/oe I = 0.34, 
10o~1 = 0.030, 10~,~1 = 0.40, 10~1 = 0.42, Irlg~l = 0.050. Dashed 
contours indicate negative values. 
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A P P E N D I X  A 

A1. The functions {gi} 

gl(u)  = [1 - exp(-2u)]/2u 

g2(u, v) = [1 + exp(--2v) -- 2 e x p ( - v ) c o s  u]/(u 2 + v 2) 

g 3 ( u ,  V) = (U 2 ÷ V2)-2[--V 2 ÷ 1 ",3 ÷ U 2 ÷ uZv --  (U 2 --  V 2) 

x e x p ( - v )  cos u - 2uv e x p ( - v )  sin u] 

ga(U,  V) = (U 2 ÷ V2)-2[U(--2V ÷ U 2 ÷ V 2) ÷ 2uv 

x e x p ( - v )  cos u + ( - u  2 + v 2) e x p ( - v )  sin u] 

gs(u, v) = [2v(u 2 + v2)2]-l[-3v2 + 2v 3 ÷ U 2 ÷ 2u2v 

- (u 2 + v z) e x p ( - 2 v )  + 4v 2 e x p ( - v )  cos u 

- 4uv e x p ( - v )  sin u] 

g6(u) = [1 - (1 + 2u) exp(-2u)]/4u 2 

g7(u, V) = (U 2 ÷ V2)-2[v ÷ (V ÷ U 2 ÷ v 2) e x p ( - 2 v )  

- (2v + u 2 + v 2) e x p ( - v )  cos u] 

gg(u, v) = (u 2 + v2)-Z[u + u e x p ( - 2 v )  - 2u e x p ( - v )  

x cos u - (u 2 + v 2) e x p ( - v )  sin u] 

gg(U, v) : [4v(u 2 + 4v2)Z]-1[-12v2 + 16v 3 + U 2 ÷ 4uZv 

- (u 2 + 4v z) exp(--4v) + 16v 2 e x p ( - 2 v )  

× cos u -- 8uv e x p ( - 2 v )  sin u] 

glo(U, v) = [4v(u 2 + 4vZ)3]-l[--u(u 2 + 4v 2) exp(--4v) 

+ u ( - 2 8 v  2 + 16v 3 + 4 u 2 v +  u z) 

+ 4uv(8v + u 2 + 4v 2) exp(--2v) cos u 

+ 4v(4v 2 + 8v 3 - 3u 2 + 2uZv) 

× e x p ( - 2 v )  sin u] 

g11(u, v) -- [16v2(u 2 + 4v2)3]-l[--144v 4 + 128v 5 

+ 32u2v 2 + 32u2v 3 + u 4 _ (u 2 + 4v2)(12v 2 

+ 16v 3 + u 2 + 4u2v)exp(--4v)-  16v2(_12v 2 

-- 8v 3 + u 2 -- 2u2v) exp(--2v) cos u 

-- 16uv2(8v + 4v 2 + u 2) exp(--2v) sin u]. 

A2. The coefficients {ci} for symmetrical scattering 
For the actual scattering geometry, the coefficients {ci} 

may be given by 

c I = cos 20oh 

C 2 = COS Ooh 
C 3 = COS q9 

c a = sin Ooh sin <p. 

q9 is the angle between §g and the normal to the plane 
spanned by (§o, §h). 

A3. The functions {f} 

f l (u)  = ( l /u2)(1 - cosu)  

f2(u) = (1/u)[1 - (1/u)  sin u] 

f3(u) = (1/u2)[1 - (1/u)  sin u] 

f4(u) = (1/u2)[sin u - (Z/u)(1 - cos u)]. 

Parts of  this work have been presented at the 
International School of  Crystallography. 23rd Course: 
X-ray and Neutron Dynamical  Diffraction: Theory and 
Applications, Erice, Italy, 1996. 

References 

Alexandropoulos, N. G., McWahn, D., Juretschke, H. J. & 
Kotsis, K. A. (1990). Acta C~st. A46, C416. 

Cannata, R., Martelli, S., Mazzone, G. & Sacchetti, E (1989). 
Acta C~st. A45, 679-686. 

Caticha-Ellis, S. (1969). Acta Cryst. A25, 666-673. 
Chang, S.-L. & Tang, M.-T. (1988). Acta Cryst. A44, 

1065-1072. 
Cromer, D. (1995). Private communication. 
Cromer, D. & Liberman, D. (1970). J. Chem. Phys. 53, 

1891-1898. 
Cromer, D. & Liberman, D. (1981). Acta Cryst. A37, 267-268. 
Hfimmer, K. & Weckert, E. (1994). Fifteenth European 

Crystallographic Meeting, Dresden, Germany. Abstracts, pp. 
41M5. 

Juretschke, H. J. (1982a). Phys. Rev. Lett. 48, 1487-1489. 
Juretschke, H. J. (1982b). Phys. Lett. A92, 183-185. 
Juretschke, H. J. (1984). Acta C~st. A40, 379-389. 
Juretschke, H. J. (1986a). Phys. Status Solidi B, 135, 455-465. 
Juretschke, H. J. (1986b). Acta C~st. A42, 449-456. 
Kissel, L. (1995). Private communication. 
Kissel, L., Pratt, R. H. & Roy, S. C. (1980). Phys. Rev. A, 22, 

1970-2004. 
Kissel, L., Zhou, B., Roy, S. C., SenGupta, S. K. & Pratt, R. H. 

(1995). Acta C~st. A51,271-288. 
Larsen, H. B. (1997). Doctoral thesis, The Norwegian 

University of Science and Technology, Trondheim, Norway. 
Lipscomb, W. N. (1949). Acta Cryst. 2, 193-194. 
Luh, S.-W. & Chang, S.-L. (1991). Acta C~st. A47, 502-510. 
Moon, R. M. & Shull, C. G. (1964). Acta C~st. 17, 805-812. 
Prager, P. R. (1971). Acta C~st. A27, 563-569. 
Schwegle, W., Hfimmer, K. & Weckert, E. (1990). Acta C~st. 

A46, C417. 
Shen, Q. (1993). Acta C~st. A49, 605-613. 
Shen, Q. & Finkelstein, K. (1990). Phys. Rev. Lett. 65, 

3337-3340. 
Thorkildsen, G. & Larsen, H. B. (1998). Acta Cryst. A54, 

120-128. 
Thorkildsen, G., Larsen, H. B., Mo, F., Semmingsen, D. & 

Mathiesen, R. H. (1998). In preparation. 
Weckert, E. & Htimmer, K. (1997). Acta Cryst. A53, 108-143. 


